

1

Face and Eye Detection Using OpenCV: Step by Step Mahdi Rezaei Department of Computer Science, the University of Auckland m.rezaei@auckland.ac.nz www.MahdiRezaei.com

Abstract:
The tutorial provides a detailed discussion on OpenCV library for face & eye detection based on
Haar-like classifiers, which is the most common technique in computer-vision for face and eye
detection. This paper is designed as part of course 775- Advanced multimedia imaging; however,
it is easy to understand for any CS student who is interested in the topic.

The following instructions are in accordance with the provided source-code for face detection,
and the tutorial “Creating a Cascade of Haar-Like Classifiers: Step by Step” both available from
www.cs.auckland.ac.nz/~m.rezaei/Downloads.html
Further technical and academic informations could be found via our published papers and
articles [1-8] available via www.cs.auckland.ac.nz/~m.rezaei/Publications.html.

Final output of this tutorial will be face detections as figure below:

2

1. Prerequisites and Settings:

 “Visual Studio 2010” and “OpenCV 2.3.1” or higher
 Default Installation path:

“C:\Program Files\Microsoft Visual Studio 10.0\”
“C:\OpenCV2.3.1\”

 “OpenCV Binary folder” should be defined in Windows environmental path
Check your openCV to make sure if where the OpenCV ‘bin’ folder is located. Then add it to
Widows path under the “system variables” as follows:

1. Right-click on My Computer icon and then click on Properties.
2. From Advanced systems settings, click on Environment Variables button.
3. Finally, in the Environment Variables window (as shown below), highlight Path in User
Variables section, and click on Edit button. Add or modify the path lines with the bin path
or other paths that you want the computer to access. If you need to use multiple directories,
separate them by semicolons as below example.

C:\Program Files; C:\OpenCV2.3.1\build\x86\vc10\bin

3

2. Create a New Project:

 In Visual Studio 2010 C++ developer, create new application by following one of three
ways below:

- Click: or

- Menu: File  New…  Project or

- Shortcut: Ctrl + Shift + N

 Choose "Visual C++” Template  “Win 32”  “Win32 Console Application"

 Select a “Location” and a “Name” for your program (e.g. Face Detection)

 Deselect “Create directory for solution” and Click OK

 Win32 Application Wizard Menu appears, Click Next.

4

 In application setting, Additional options, tick “Empty project”

After these steps, the application wizard will create a folder with the same project name and in
the same path that you already defined.

5

Following above steps, a few files like below will be created in your project folder:

Ok, now back to the Visual Studio developing window.

 Right Click on the Source Files  Add  New Item…

 A new window appears (see below). Select C++ File, Add the Name (e.g. Face Detection) and

click Add.

6

 Write your code and when finished, build your solution by pressing F7. You may expect to see
some errors! To resolve the problem, you need to put some additional setting as follows:

 From Solution Explorer, right click on Face Detection or press Alt + F7

- Select Configuration Properties  VC++ Directories tab

Make sure to put the paths C:\OpenCV2.3.1\include; C:\OpenCV2.3.1\build\include;
for Include Directories as well as C:\OpenCV2.3.1\build\x86\vc10\lib for Library
Directories (see below).

7

- From Linker tab  Input Category  Additional Dependencies

In front of Additional Dependencies put the paths for all needed libraries such as:

 opencv_core231d.lib; opencv_highgui231d.lib; opencv_imgproc231d.lib; opencv_objdetect231d.lib;

8

 Click Apply to save your settings
 That’s it! Now, you can compile, run and enjoy your program  - Press F5

3. Brief Review on the Provided Source Code

Preliminary settings before running the program:

1- In this program, there is a classifier which uses data stored in an XML file to decide how to
classify input images. In order to initiate the classifier in your program, you need to identify
where the XML data file is located on your computer.

The one you can use is haarcascade_frontalface_default.xml. In OpenCV version 2.3.1 it's
located in: C:\OpenCV2.3.1\data\haarcascades\

It’s a good idea to copy this XML file into your project folder to make you program more
portable. Make sure the path you are defining is correct.

2- You'll also need a few images to test your program. The image names should be sequential
with a same image extension; such as P0000.bmp, P0001.bmp, ..., P0124.bmp

In the provided source code the program loads images from path \Face Detection\MyImages.

9

The classifier file(s) are located in path \Face Detection\MyCascade
So, make sure to put these two folders into your project folder.

Initializing the Detector:

CvHaarClassifierCascade *cascade;
Defining cascade as a pointer to the structure - a trained classifier from a XML file

CvMemStorage *storage;
It is used to define a growing memory structure when you need to store dynamically growing data
structures such as loading image sequences in your program.

(1), (2):
Both doing the same job in different ways. The function cvLoad(), loads the XML file that
CascadeFile point to (i.e. haarcascade_frontalface_alt2.xml).

cvLoad() is a general-purpose function for loading data from files. It can take up to four input
parameters. For this example, you'll only need the first parameter which is the path to an XML file
containing a valid Haar Cascade file. Here, we are loading a frontal face detectors

MyCascade/haarcascade_frontalface_alt2.xml

(3):
Before loading and detecting faces in images, you'll also need to initiate CvMemStorage object.
This is a memory buffer that expands automatically, as needed. The face detector will put the list of
detected faces into this buffer. Since the buffer is expandable, you won't need to worry about
overflowing. All you need is to create a dynamic memory storage as below:

storage = cvCreateMemStorage(0);
0 is the default value for initial memory block size.

(4):
This line loads an input image in order to perfom face detection.

IplImage, is a data structure which is inherited from Intel Image Processing Library (IPL).

IplImage *inImage = cvLoadImage("GT.jpg",1);

Loads image data “GT.jpg” into inImage. 1 meand load the image as a 3-channel image
Parameters:
>0 or CV_LOAD_IMAGE_COLOR the loaded image is forced to be a 3-channel color image
=0 or CV_LOAD_IMAGE_GRAYSCALE the loaded image is forced to be grayscale
<0 or CV_LOAD_IMAGE_UNCHANGED the loaded image will be loaded as is

(5):
Since it's easy to get a path wrong, lack of system memory, or mis-adressing the input file. So a good
idea is to insert a quick check before going furture for face detection. With this we make sure
everything loaded and initialized properly.

10

This module does a simple error check, shows a diagnostic message, and exit if the initialil check
fails

if(!cascade || !storage || !inImage)
 {
 printf("Initialization Failed:%s\n",
 (!cascade)? " Cascade file not found !\n":
 (!storage)? " Not memmory allocated or not enough memory !\n":
 " The input file can not be found!\n");
 system("pause");
 return 0;
 }

(6):
Calls the function detecFaces() for face detection. The function shows the image GT.jpg which
already was loaded into inImage along with detected faces, and finally realses the input image from
memory.

(7):
This part follows a similar manner, but loads a sequence of multiple images P0000.bmp, P0001.bmp,
and P0002.bmp … via a for loop. The loop loads images one by one, calls the function
detecFaces() and shows detected faces for each image, seperately.

(8):
We are close to the end of main() and now we should clean up the occupied memory by release
functions: cvReleaseHaarClassifierCascade(&cascade1) and
cvReleaseMemStorage(&storage)

Now let’s go for detail of function detectFaces in section (9)

(9):
CvSeq * faces = cvHaarDetectObjects(newframe, cascade, storage,
 1.4, 1, 0, cvSize(100, 100));

cvHaarDetectObjects() runs the face detector. The function takes up to 7 parameters:

1- Image pointer: declares the input file here, newframe.
2- Classifier: Identifies the cascade classifier cascade, that we introduced it at the beginning of

the program.
3- Buffer: The memory buffer (storage) that also previously allocated to handle face detection

process.
7- yes 7!, Window Size: the parameter cvSize(W,H), defines the size of smallest face to be

searched within the input image. Actually this is the size of initial sliding-window. The
default size in OpenCV is w=24 and h=24. However based on input image a tiny sub-window
of 24x24 may not be meaningful as a face. So you may increase the size of initial search
windows e.g. to 100x100.

4- Scale Rate: The fourth input parameter specifies how quickly OpenCV should increase the
scale for face detections, within search iterations. Higher values for this parameter will cause
the detector run faster (by running fewer number of sliding window in each iteration), but if
it's too high, it may jump too quickly between scales and miss some of the faces. Default

11

value for this parameter in OpenCV is 1.1 that means the scale increases by a factor of 10%
on each pass.

5- Minimum Neighbors Threshold: when you call the face detector, for each positive face
region actually it may generate many hits from the Haar detector. However, in face region
there would be a large cluster of rectangles with largely overlaps. In addition, there may be
some scattered detections which may appear around the face region. Usually, isolated
detections are false detections, so it makes sense to discard these detections. It also makes
sense to somehow merge the multiple detections for each face region into a single detection.
The fifth parameter does both above actions before returning the final detected face. This
merge step at first groups rectangles that contain a large amount of overlap, then finds the
average rectangle for the group. It then replaces all rectangles in the group with the average
rectangle. For example the minimum-neighbors threshold 3 means to merge groups of three
or more and discard groups with fewer rectangles. If you find that your face detector is
missing a lot of faces, you might try lowering this threshold; or increase it, if you find
multiple detections for a single face.

6- Flag Variable: is the sixth parameter to cvHaarDetectObjects().For this flag there are 6
available options. However, we discuss here on two most important ones.
The flag can be set either 0, what means no change in the input image or as
CV_HAAR_DO_CANNY_PRUNING. The second option means by running canny edge detection,
the detector skips image regions that are flat (no edge) which are unlikely to contain a face.
This can reduce overall computational time and possibly eliminating some false detections.
However depend on your application this may also lead to missing some existing faces.

After face detection, second part of module (9) draws a rectangle to show the location of detected
face. The code below draws n rectangle (i=n) for the n detected face as below:
Number of repeat in loop depends on the number of detected face in previous step which is stored in
faces.

The structure CvSeq is growable sequence of elements (here detected faces) and is a base for all of
OpenCV dynamic data structures)

The first line inside the loop

CvRect *r = (CvRect *)cvGetSeqElem(faces, i);
Get and returns three Square elements of the detected face:

12

- top left position of the face as (x, y)
- width
- height

CvRectangle() draws a rectangle based on above information.

cvRectangle(CvArr* img, CvPoint pt1, CvPoint pt2, CvScalar color, int
 thickness=1, int lineType=8, int shift=0)

Parameters in cvRectangle :

 img – Image
 pt1 – top left rectangle’s vertices
 pt2 – opposite rectangle vertex
 color – Line color (RGB) or brightness (in gray-scale image)
 thickness – Thickness of lines that make up the rectangle. Negative values, or

CV_FILLED, cause the function to draw a filled rectangle.
 lineType – Type of the line
 shift – Number of fractional bits in the point coordinates

Parameters in our code:

for(int i = 0 ; i < (faces ? faces->total : 0) ; i++)
 {
 CvRect* r = (CvRect*)cvGetSeqElem(faces, i);
 cvRectangle(newframe,
 cvPoint(r->x, r->y),
 cvPoint(r->x + r->width, r->y + r->height),
 CV_RGB(0, 255, 0), 2, 8, 0);
 }

- Newframe: The image in which the rectangle should be drawn on.
- cvPoint(r->x, r->y):determines the top-left coner of the rectangle which is x, y
- cvPoint(r->x + r->width, r->y + r->height): defines the right-bottom

corner of the rectangle which is “x+width” and “y+height”.
- CV_RGB(0, 255, 0): Defines the rectangle color (here green).
- 2: Tichness of the rectangle in pixel (here 2 pixel).
- 8: Linetype (8-connected, 4- connected, CV_AA*).
- 0: No Shift (each shift value devides the rectangle size and location by 2). e.g. Shift=3

means deviding the rectangule size and location by 8 .

*CV_AA: means Anti-Aliased but it is not applicable in rectangle drawing

13

As discussed earlier, finally in module (8) all the resources release and the program exits.

Eye Detection: For eye detection you just need to replace the classifier with an eye-detection
cascade file, plus modifing cvSize(100, 100) to a smaller sliding windows. That is because an “eye”
is smaller than a “face”, so we need to start with an smaller sliding window.

Next tutorial will be about how to create your own classifier (for face or eye detection).

Lab Practices:

1- Setup and run provided source code as described in tutorial.
2- Adjust face detection parameters to detect the highest rate of True Positives and less number

of False Detection.

Further Practices:
Instead of using a green rectangle to outline the detected faces, try to use other types of OpenCv
“drawing functions” such as cvCircle or cvEllipse.

Key: 115503030

More information: You can fined more advanced information via our published academic papers
with various applications for face detection [1], [3], open or closed eye state detection [4], [6],
vehicle detections and driver assistance systesm [5], and even facial feature improvements in artistic
painting and rendering [7],[8].

References:

[1] Mahdi Rezaei, Reinhard Klette, “3D cascade of classifiers for open and closed eye detection in
driver distraction monitoring”, In Proc. Computer Analysis of Images and Patterns, pp. 171-179,
2011.

[2] Mahdi Rezaei, Reinhard Klette, “Simultaneous Analysis of Driver Behaviour and Road Condition
for Driver Distraction Detection”, International Journal of Image and Data Fusion, 2, 217-236, 2011.

[3] Mahdi Rezaei, Hossein Ziaei Nafchi, Sandino Morales, “Global Haar-like Features: A New
Extension of Classic Haar Features for Efficient Face Detection in Noisy Images”, 6th Pacific-Rim
Symposium on Image and Video Technology, PSIVT 2013.

[4] Mahdi Rezaei, Reinhard Klette, “Novel Adaptive Eye Detection and Tracking for Challenging
Lighting Conditions”, Asian Conference on Computer Vision Workshops (ACCV), pp. 427-440,
2013.

14

[5] Mahdi Rezaei, Mutsuhiro Terauchi, Vehicle Detection Based on Multi-feature Clues and
Dempster-Shafer Fusion Theory, 6th Pacific-Rim Symposium on Image and Video Technology,
PSIVT 2013.

[6] Mahdi Rezaei, Reinhard Klette, “Adaptive Haar-like Classifier for Eye Status Detection Under
Non-ideal Lighting Conditions”, Proceedings of the 27th Conference on Image and Vision
Computing New Zealand (IVCNZ), pp. 521- 526, 2012.

[7] Mahdi Rezaei, “Artistic Rendering of Human Portraits Paying Attention to Facial Features”,
Arts and Technology, 101, pp. 90-99, 2012.

[8] Mahdi Rezaei, Juan Lin, Reinhard Klette, “Hybrid Filter Blending to Maintain Facial Expressions
in Rendered Human Portraits”, International Journal of Arts and Technology, 2014.

